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Real Hypersurfaces in Complex Two-Plane
Grassmannians with GTW Reeb Lie
Derivative Structure Jacobi Operator
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Abstract. Using GTW connection, we considered a real hypersurface M
in a complex two-plane Grassmannian G2(C

m+2) when the GTW Reeb
Lie derivative of the structure Jacobi operator coincides with the Reeb
Lie derivative. Next using the method of simultaneous diagonalization,
we prove a complete classification for a real hypersurface in G2(C

m+2)
satisfying such a condition. In this case, we have proved that M is an
open part of a tube around a totally geodesic G2(C

m+1) in G2(C
m+2).
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Introduction

For real hypersurfaces with parallel curvature tensor, many differential geome-
ters have studied in complex projective spaces or in quaternionic projective
spaces [8,12,13]. From a different point of view, it is attractive to classify
real hypersurfaces into complex two-plane Grassmannians with certain con-
ditions. For example, there is some result about parallel structure Jacobi
operator (for more detail, see [6,7]). It is natural to question about complex
two-plane Grassmannians.

As an ambient space, a complex two-plane Grassmannian G2(Cm+2)
consists of all complex two-dimensional linear subspaces in C

m+2. This Rie-
mannian symmetric space is the unique compact irreducible Riemannian
manifold being equipped with both a Kähler structure J and a quaternionic
Kähler structure J not containing J . Then, we could naturally consider two
geometric conditions for hypersurfaces M in G2(Cm+2), namely, that the
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one-dimensional distribution [ξ] = Span{ξ} and the three-dimensional distri-
bution D⊥ = Span{ξ1, ξ2, ξ3} are both invariant under the shape operator A
of M [2], where the Reeb vector field ξ is defined by ξ = −JN , N denotes
a local unit normal vector field of M in G2(Cm+2) and the almost contact
3-structure vector fields ξν are defined by ξν = −JνN (ν = 1, 2, 3).

Using the result in Alekseevskii [1], Berndt and Suh [2] proved the fol-
lowing result about space of type (A) [sentence about (A)] and type (B) [one
about (B)]:

Theorem A. Let M be a connected orientable real hypersurface in G2(Cm+2),
m ≥ 3. Then both [ξ] and D⊥ are invariant under the shape operator of M
if and only if
(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in

G2(Cm+2), or
(B) m is even, say m = 2n, and M is an open part of a tube around a totally

geodesic HPn in G2(Cm+2).

When we consider the Reeb vector field ξ in the expression of the cur-
vature tensor R for a real hypersurface M in G2(Cm+2), the structure Jacobi
operator Rξ can be defined in such as

Rξ(X) = R(X, ξ)ξ,

for any tangent vector field X on M .
Using the structure Jacobi operator Rξ, they [6] considered a notion

of parallel structure Jacobi operator, that is, ∇XRξ = 0 for any vector field
X on M , and gave a non-existence theorem. And authors [7] considered the
general notion of D⊥-parallel structure Jacobi operator defined in such a way
that ∇ξi

Rξ = 0, i = 1, 2, 3, which is weaker than the notion of parallel
structure Jacobi operator. They also gave a non-existence theorem.

By the way, the Reeb vector field ξ is said to be Hopf if it is invariant
under the shape operator A. The one-dimensional foliation of M by the in-
tegral manifolds of the Reeb vector field ξ is said to be the Hopf foliation of
M . We say that M is a Hopf hypersurface in G2(Cm+2) if and only if the
Hopf foliation of M is totally geodesic. Using the formulas in [4, section 1] it
can be easily checked that M is Hopf if and only if the Reeb vector field ξ is
Hopf.

Now, instead of the Levi–Civita connection for real hypersurfaces in
Kähler manifolds, we consider another new connection named generalized
Tanaka–Webster connection (in short, let us say the GTW connection) ∇̂(k)

for a non-zero real number k [9]. This new connection ∇̂(k) can be regarded
as a natural extension of Tanno’s generalized Tanaka–Webster connection ∇̂
for contact metric manifolds. Actually, Tanno [16] introduced the generalized
Tanaka–Webster connection ∇̂ for contact Riemannian manifolds using the
canonical connection on a non-degenerate, integrable CR manifold.

On the other hand, the original Tanaka–Webster connection [15,17] was
given as a unique affine connection on a non-degenerate, pseudo-Hermitian
CR manifold associated with the almost contact structure. In particular, if a
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real hypersurface in a Kähler manifold satisfies φA+Aφ = 2kφ (k �= 0), then
the GTW connection ∇̂(k) coincides with the Tanaka–Webster connection.

Related to GTW connection, due to Jeong et al. [4,5], the GTW Lie
derivative was defined by

L̂(k)
X Y = ∇̂(k)

X Y − ∇̂(k)
Y X, (1)

where ∇̂(k)
X Y = ∇XY + g(φAX, Y )ξ − η(Y )φAX − kη(X)φY, k ∈ R\{0}.

In this paper, using the GTW Lie derivative, we consider a condition
that the GTW Reeb Lie derivative of the structure Jacobi operator coincides
with the Reeb Lie derivative, that is,

(
L̂(k)

ξ Rξ

)
Y = (LξRξ)Y, (2)

for any tangent vector field Y in M . Using above notion, we have a classifi-
cation theorem as follows:

Main Theorem. Let M be a connected orientable Hopf hypersurface in a com-
plex two-plane Grassmannian G2(Cm+2), m ≥ 3. If the GTW Reeb Lie deriv-
ative of the structure Jacobi operator coincides with the Reeb Lie derivative
and the Reeb curvature is non-vanishing constant along the Reeb vector field,
then M is an open part of a tube around a totally geodesic G2(Cm+1) in
G2(Cm+2).

As a corollary, we consider a condition stronger than the condition (2)
as follows:

(
L̂(k)

X Rξ

)
Y = (LXRξ)Y

for any tangent vector fields X,Y in M . Then we assert the following

Corollary. There do not exist any connected orientable Hopf real hypersur-
faces in G2(Cm+2), m≥ 3, with (L̂(k)

X Rξ)Y = (LXRξ)Y when the Reeb cur-
vature is constant along the direction of the Reeb vector field.

In Sect. 1, we introduce basic equations in relation to the structure
Jacobi operator and prove the key lemmas which will be useful to proceed
our main theorem. In Sects. 2 and 3, we give a complete proof of the main
theorem and corollary, respectively. In this paper, we refer to [1–3,6,10] for
Riemannian geometric structures of G2(Cm+2) and its geometric quantities,
respectively.

1. Key Lemmas

In this section, we introduce some fundamental equation of structure Jacobi
operator and lemmas. The structure Jacobi operator is given as
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RξX = R(X, ξ)ξ
= X − η(X)ξ

−
∑3

ν=1

{
ην(X)ξν − η(X)ην(ξ)ξν + 3g(φνX, ξ)φνξ + ην(ξ)φνφX

}

+αAX − α2η(X)ξ, (1.1)

for any tangent field X on M.
In [4], they defined the GTW Lie derivative as follows:

L̂(k)
X Y = ∇̂(k)

X Y − ∇̂(k)
Y X,

where ∇̂(k)
X Y = ∇XY +F

(k)
X Y, F

(k)
X Y = g(φAX, Y )ξ−η(Y )φAX−kη(X)φY .

The operator F
(k)
X Y said to be the generalized Tanaka–Webster operator (in

short, GTW operator).
Putting X = ξ and Y = ξ, the GTW operator is written as

F
(k)
ξ Y = −kφY and F

(k)
X ξ = −φAX, respectively. (1.2)

For the (1,1) type tensor Rξ, this condition (L̂(k)
X Rξ)Y = (LXRξ)Y is equiv-

alent to
F

(k)
X (RξY ) − F

(k)
RξY X − RξF

(k)
X Y + RξF

(k)
Y X = 0. (1.3)

Replacing X=ξ in (1.3) and using (1.2), we get

− kφRξY + φARξY + kRξφY − RξφAY = 0. (1.4)

Since Rξ is a symmetric tensor field, taking symmetric part of (1.4), we
have

kRξφY − RξAφY − kφRξY + AφRξY = 0. (1.5)

Subtracting (1.5) from (1.4), we obtain

(φA − Aφ)RξY = Rξ(φA − Aφ)Y. (1.6)

Therefore, this condition the GTW Reeb Lie derivative of the structure Jacobi
operator coincides with the Reeb Lie derivative has such a geometric meaning,
that is, (φA − Aφ) and Rξ commute with each other.

Putting Y = ξ in (1.3) and using (1.2), (1.3) is replaced by

Rξ(φAX) − kRξ(φX) = 0. (1.7)

Taking the transpose part on (1.7), we get

− AφRξX + kφRξX = 0. (1.8)

Using these above equations, we can give two lemmas which will con-
tribute to prove our main theorem.

Lemma 1.1. Let M be a Hopf hypersurface M in G2(Cm+2). If the GTW
Reeb Lie derivative of the structure Jacobi operator coincides with the Reeb
Lie derivative of this operator and the principal curvature α is constant along
the direction of the Reeb vector field ξ, then the Reeb vector field ξ belongs to
the distribution D or the distribution D⊥
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Proof. Let us put ξ = η(X0)X0+η1(ξ1)ξ1, for some unit vector fields X0 ∈ D
and ξ1 ∈ D⊥. If α = 0, then ξ ∈ D or ξ ∈ D⊥, which is proved by Pérez and
Suh [14].

Therefore, we consider the other case α �= 0. Putting X = ξ1 into (1.1)
and using Aξ1 = αξ1, we have

Rξ(ξ1) = α2ξ1 − α2η(ξ1)ξ. (1.9)

Replacing X = φξ1 into (1.1), (1.1) becomes

Rξ(φξ1) =
(
α2 + 8η2(X0)

)
φ1ξ. (1.10)

Putting X = ξ into (1.3) and using (1.2), (1.1) is written as

− kφRξY + φARξY + kRξ(φY ) − Rξ(φAY ) = 0. (1.11)

Substituting Y = ξ1 in the above equation and using (1.9), (1.10), it becomes

8(k − α)η2(X0)φ1ξ = 0. (1.12)

Taking the inner product with φ1ξ, we get

8(k − α)η4(X0) = 0. (1.13)

This equation induces that k = α or η4(X0) = 0. Therefore, it completes the
proof of our lemma. �

In next section, we will give a complete proof of our main theorem. To
do this, first we consider the case that ξ ∈ D⊥. Without loss of generality,
we may put ξ = ξ1.

Lemma 1.2. Let M be a Hopf hypersurface in G2(Cm+2) when the Reeb cur-
vature is non-vanishing. If the GTW Reeb Lie derivative of the structure
Jacobi operator coincides with the Reeb Lie derivative of this operator and
the Reeb vector field ξ belongs to the distribution D⊥, then the shape operator
A commutes with the structure tensor φ.

Proof. Putting ξ = ξ1 in (1.1), we get

RξX = X−η(X)ξ−φ1φX+αAX−α2η(X)ξ+2η2(X)ξ2+2η3(X)ξ3. (1.14)

Replacing X with AX in (1.14), it is written as

RξAX =AX−αη(X)ξ−φ1φAX+αA2X−α3η(X)ξ+2η2(AX)ξ2+2η3(AX)ξ3.
(1.15)

And applying the shape operator A on (1.14) becomes

ARξX =AX−αη(X)ξ−Aφ1φX+αA2X−α3η(X)ξ+2η2(X)Aξ2+2η3(X)Aξ3.
(1.16)

On the other hand, applying the structure tensor field φ to the equation (1.8)
in [11], we get

AX = αη(X)ξ + 2η2(AX)ξ2 + 2η3(AX)ξ3 − φφ1AX. (1.17)

Taking the symmetric part of (1.17), we obtain

AX = αη(X)ξ + 2η2(X)Aξ2 + 2η3(X)Aξ3 − Aφ1φX. (1.18)
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Putting ν = 1 in the first equation of (1.5) in [4], it becomes

φφ1X = φ1φX. (1.19)

Using (1.17), (1.18), (1.19) and subtracting (1.16) from (1.15), we have

RξAX = ARξX. (1.20)

Putting Y = X in (1.6) and using (1.20), (1.6) is written as

A(Rξφ − φRξ)X = (Rξφ − φRξ)AX. (1.21)

Putting X = φX in (1.14), we have

RξφX = φX − φ1φ
2X + αAφX + 2η2(φX)ξ2 + 2η3(φX)ξ3. (1.22)

Applying the structure tensor field φ to (1.14), we get

φRξX = φX − φφ1φX + αφAX + 2η2(X)φξ2 + 2η3(X)φξ3. (1.23)

Subtracting (1.23) from (1.22), we obtain

(Rξφ − φRξ)X = α(Aφ − φA)X. (1.24)

Using the Eq. (1.24), the equivalent condition of (1.21) is this one as

αA(Aφ − φA)X = α(Aφ − φA)AX. (1.25)

By our assumption α �= 0, the above equation can be replaced by

A(Aφ − φA)X = (Aφ − φA)AX. (1.26)

Because of (1.26), there is a common basis {ei | i = 1, . . . , 4m − 1} such that

Aei = λiei (1.27)

and
(Aφ − φA)ei = γiei. (1.28)

Using (1.27), (1.28) becomes

γiei = Aφei − φAei = Aφei − λiφei. (1.29)

Taking the inner product with ei, we get γi = 0. Since the eigenvalue γi

vanishes for all i, from (1.28) we conclude that

Aφ − φA = 0. (1.30)

Consequently, we proved this lemma. �

2. Proof of Main Theorem

Let us consider a Hopf hypersurface M in G2(Cm+2) with (L̂(k)
ξ Rξ)Y =

(LξRξ)Y .
By Lemma 1.1 in Sect. 1, we can conclude that the Reeb vector field ξ

in M belongs either to the distribution D or D⊥.
Then, we can divide the following two cases:

• Case I: ξ ∈ D⊥

• Case II: ξ ∈ D
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Now, we check the first case in our consideration. If ξ ∈ D⊥, by Theorem
A and Lemma 1.2, we can assert that M is locally congruent to the model
space of type (A). We have to check if the model space of type (A) satisfies
the condition (L̂(k)

ξ Rξ)Y = (LξRξ)Y or not. For type (A)-space, detailed
information (eigenspaces, corresponding eigenvalues, and multiplicities) was
given in [2].

Putting X = ξ in (1.3), we get the equivalent condition of (L̂(k)
ξ Rξ)Y =

(LξRξ)Y as follows:

− kφRξY + φARξY + kRξφY − RξφAY = 0. (2.1)

On the other hand, putting ξ = ξ1 into (1.1), we get

RξX = X −η(X)ξ −φ1φX +αAX −α2η(X)ξ +2η2(X)ξ2 +2η3(X)ξ3. (2.2)

Using (2.1) and (2.2), we get the following result:

− kφRξY + φARξY + kRξφY − RξφAY =

⎧
⎪⎪⎨
⎪⎪⎩

0, if Y ∈ Tα

0, if Y ∈ Tβ

0, if Y ∈ Tλ

0, if Y ∈ Tμ.

(2.3)

Therefore, we can assert that if ξ in D⊥, then M is an open part of a tube
around a totally geodesic G2(Cm+1) in G2(Cm+2).

If the Reeb vector field ξ ∈ D, due to [10], we can assert that M is
locally congruent to space of type (B). It remains whether type (B)-space
satisfies this condition (L̂(k)

X Rξ)Y = (LXRξ)Y . Also, using information of
type (B)-space given in [2], we can check this problem.

We suppose that type (B)-space satisfies (L̂(k)
ξ Rξ)Y = (LξRξ)Y . Then,

as an equivalent condition, this space must satisfy

− kφRξY + φARξY + kRξφY − RξφAY = 0. (2.4)

Since ξ belongs to D, the structure Jacobi operator in G2(Cm+2) can be
replaced as follows:

RξX = X − η(X)ξ −
∑3

ν=1

{
ην(X)ξν + 3g(φνX, ξ)φνξ

}
+ αAX − α2η(X)ξ.

(2.5)
Applying Y = φ1ξ ∈ Tγ into (2.4) and using (2.5), we get

k(4 − αβ)ξ1 = 0. (2.6)

Since k �= 0 and αβ = 4, this makes a contradiction.
Hence summing up these assertions, we have given a complete proof of

our main theorem in the introduction.

3. Proof of Corollary

In this section, we consider another problem for this condition

(L̂(k)
X Rξ)Y = (LXRξ)Y, (3.1)

for any tangent vector fields X,Y in M .
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If the Reeb curvature is non-vanishing, the condition φA = Aφ have
been already proved in Lemma 1.2. Thus, we now consider only the case that
α is vanishing. Under these assumptions, we give the following lemma.

Lemma 3.1. Let M be a Hopf hypersurface in G2(Cm+2) with vanishing the
Reeb curvature. If the GTW Reeb Lie derivative of structure Jacobi operator
coincides with Reeb Lie derivative of this operator and the Reeb vector field
ξ belongs to the distribution D⊥, then shape operator A and the structure
tensor φ commute with each other.

Proof. Recall that (1.3) was given by

F
(k)
X RξY − F

(k)
RξY X − RξF

(k)
X Y + RξF

(k)
Y X = 0. (3.2)

Putting X = ξ in the above equation and using (1.7), (1.8), (3.2) is written
as

(φA − Aφ)RξY = 0. (3.3)
Applying α = 0 in (2.2), it becomes

RξX = X − η(X)ξ − φ1φX + 2η2(X)ξ2 + 2η3(X)Aξ3. (3.4)

On the other hand, applying φ and X = φX to (1.18), respectively, we have

φAX = 2η2(X)φAξ2 + 2η3(X)φAξ3 − φAφ1φX,

AφX = 2η3(X)Aξ2 − 2η2(X)Aξ3 − Aφ1φ
2X.

(3.5)

Combining (3.3), (3.4), (3.5) and using (1.19), we get

2(φA − Aφ)Y = 0. (3.6)

Therefore, we also get the same conclusion in case of α = 0. �

By Lemmas 1.2 and 3.1, we can assert that if ξ ∈ D⊥, then M is the
model space of type (A). Now we need to check if the space of type (A)
satisfies (3.1) or not.

Then the type (A)-space must satisfy the following equivalent property

F
(k)
X RξY − F

(k)
RξY X − RξF

(k)
X Y + RξF

(k)
Y X = 0. (3.7)

Putting Y = ξ into (3.7), we have

RξφAX − kRξφX = 0. (3.8)

Using (3.4), (3.8) becomes

φAX + φ1AX + αAφAX + 2η3(AX)ξ2 − 2η2(AX)ξ3
−kφX − kφ1X − kαAφX − 2kη3(X)ξ2 + 2kη2(X)ξ3 = 0. (3.9)

Replacing ξ2 into X, we get

(αβ + 2)(k − β)ξ3 = 0. (3.10)

Taking the inner product with ξ3, the above equation implies αβ = −2 or
k = β. However, since k �= 0, α =

√
8 cot(

√
8r) and β =

√
2 cot(

√
2r), this

makes a contradiction.
Hence, we can assert our corollary in the introduction.
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